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RESUMO

Atualmente, muitos métodos para resolver problemas inversos decorrentes de eletrodindmica e acustica
tém sido desenvolvidos, mas o desenvolvimento de sistemas préaticos é necessario para combinar um grande
ndmero de equacdes que contribuem para a fundamentacdo de métodos numéricos para resolver varios
problemas multidimensionais. Portanto, o principal objetivo do trabalho é uma analise comparativa de métodos
numeéricos para solucionar o problema acustico inverso unidimensional bem como na busca por resisténcia
acustica. Para atingir esse objetivo, os métodos de descricdo e comparacdo, que contribuiram para a
identificacao das caracteristicas da impedéancia acustica, foram empregados. Além disso, 0 método da solucao
de diferenca finita, o método de circulacdo do circuito diferencial e o método de iteracdo Landweber foram
usados. Foi estabelecido que o método de inversdo do esquema de diferencas é conveniente para aplicagdo no
caso em que informacgdes adicionais séo conhecidas com precisdo suficiente e a solugéo reconstruida € bastante
suave. Foi determinado que, se uma dessas condig¢fes for violada, 0 método de reverter o esquema de diferencas
se tornard instavel. Foram investigados os problemas de correcdo dos problemas da equagdo de onda com
velocidade complexa nos casos unidimensionais e espaciais. Foram obtidas férmulas para resolver esses
problemas - analogos de férmulas classicas. Calculos numéricos mostraram o tipo de resultados que podem ser
esperados do método considerado. O material do trabalho implica o significado pratico para os professores
universitarios das especializagdes em tecnologia da informacao.

Palavras-chave: fungéo teta de Heaviside, método de inversdo de circuito de diferenca, método de iteragao de
Landweber, analégico discreto.

ABSTRACT

Nowadays, a large number of methods for solving inverse problems arising in electrodynamics and
acoustics have been developed, but the development of practical systems is necessary to combine a large number
of equations that contribute to the substantiation of numerical methods for solving various multidimensional
problems. Therefore, the main goal of the work is a comparative analysis of statistical methods for solving the
one-dimensional inverse acoustic problem, as well as in the search for acoustic resistance. To achieve this goal,
the means of description and comparison, which contributed to the identification of the characteristics of acoustic
impedance, were used. Also, the finite-difference solution method, the differential circuit circulation method, and
the Landweber iteration method were used. It was established that the inversion method of the difference scheme
is expedient to apply in the case when additional information is known accurately enough, and the reconstructed
solution is quite smooth. It was determined that if one of these conditions is violated, the method of reversing the
difference scheme becomes unstable. The problems of the correctness of the issues for the wave equation with
complex velocity in the one-dimensional and spatial cases were investigated. Formulas for solving these problems
were obtained — analogs of classical formulas. Numerical computations show the kind of results that may be
expected from the method under consideration. The materials of the paper imply the practical significance for the
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university teachers of the information technology specializations.

Keywords: Hevisayd's theta-function, final and differential look, method of the circulation of the differential
scheme, method of iterations of Landveber, discrete analog.

AHHOTALUA

K HacTosLeMy BpeMeHU CyLLEeCTBYIOT pa3fuyHble METOAbI peLleHns obpaTHbIX 3a4ay, BO3HUKaOLWKX B
aNeKTpoAMHaMUKe, akyCTUKe, HO pa3paboTka NpakTUYeckux cUcTeM Heobxogmma Ans o6beanHeHne 60MbLWOoro
yucra ypaBHEHWMN, KOTOpble CNOCOBCTBYIOT ODOCHOBAHWIO YUCMEHHBIX METOAO0B peLIeHUS] MHOTOMEPHbIX
pasnuuHbiX 3agad. [1oaToMy OCHOBHasa uenb paboTbl 3aknio4aeTcsl B CPABHUTENbHOM aHamnu3e YUCMEHHbIX
MEeTOOOB peLleHns ogHOMePHOM 0BpaTHON 3agayun akyCTUKK, a Takke B NOUCKE aKyCTUYECKOro CONPOTUBEHMS.
[na [ocTukeHnsa nocTaBneHHoOW Lenn asTopamu 6binm NCNonb30BaHbl METOAbI ONUCAHWS, CPaBHEHWUS!, KOTOPbIE
nocnocobcTBoBany BbISABMEHUIO OCODEHHOCTEN aKyCTUMYeCKOoro umnegaHca. Takke B paboTe MpuMMEHEHbI
KOHEYHO-Pa3HOCTHbIA METOA, METOA LMpKynaunm anddepeHLnansHon cxembsl U MeToa ntepauun fllanasebepa.
YcTaHOBNEHO, 4YTO MeTon obpalleHuss pa3HOCTHOW CXeMbl LernecoobpasHo NpMMEHATb B cry4vae, Korga
OOnonHUTENbHas MHQOpMauusa Uu3BEeCTHa [OCTAaTOMHO TOYHO W pelueHue He TpebyeT [OMNOMHMTENbHbIX
nogxogos. OnpegeneHo, YTO MpU HapyLIEHUN OOHOTO M3 3TUX YCIOBUI MeToa obpalleHnst pa3HOCTHOWM CXeMbl
CTaHOBUTCH HeycTonM4MBbIM. MccnegoBaHbl BOMPOCHI KOPPEKTHOCTM 3agady Ansl BOJIHOBOIO YpaBHEHMWS C
KOMMJIEKCHON CKOPOCTbIO B OOHOMEPHOM W MPOCTPAHCTBEHHOM cryyasx. NonydeHbl hopmynbl pelleHnst aTmx
3agay — aHarnoru krnaccumdeckux gopmyn. YmcneHHble pacyeTbl NoKasbiBalT pe3ynbTaTbl, KOTOPblE BO3MOXHO
oXuagaTtb OT MCMOMb30BAHHOrO Metoda. Matepmanel cTatbu npegnoniaratoT NPaKTUYECKYD 3HAYMMOCTb AN
npenogaBaTenen By30B, KOTOPbIE CNELNanu3npyroTcs Ha MHPOPMALMOHHBIX TEXHOMOMMIA.

KnioueBble cnoBa: mama-gyHkyus Xesucatida, Memod obpaweHuUsi pasHOCMHOU cxembl, Memod umepayuu
JlaHdsebepa, duckpemHnbili aHaoa.

1. INTRODUCTION effective algorithms for solving multidimensional
inverse and incorrect acoustics issues and

_ ) electrodynamics.
As is known, most of the inverse problems

of geophysics is devoted to determining the speed
of sound in the framework of the wave equation or
its various approximations. It is assumed that other
parameters of the medium, such as the density
and absorption of the medium, are constant and
known (Evstigneev et al., 2016; Chkadua, 2017;
Aliev and Isayeva, 2018; You et al., 2018).
Knowledge of this single parameter of the medium
— the speed of sound is sufficient in many practical
cases. At the same time, it is evident that in many
essential inverse problems it is impossible to
confine oneself to this approximation and it is
necessary to use more accurate models of the
structure of the medium and introduce other
additional parameters that allow a more adequate
description of reality (Gibson, 2018; Safarov,
2018; Peji¢ et al., 2018). These multi-parameter
models provide more complete information about
the structure of the medium and are therefore of
great interest. Naturally, the processes occurring
in such media are described by more complex
equations than the wave equation.

The creation and justification of numerical
methods for solving inverse and incorrect
problems is an urgent problem, firstly, due to the
practical importance of reverse and incorrect
problems, and secondly, due to the need to create

It is known that the optimization method is
an effective method for solving inverse problems.
This method consists in minimizing a specific
function concerning the required parameters. The
required parameters are the values of the
determined quantities at given points in space.
Various iterative procedures are used as
minimization methods. The quality of one or
another numerical minimization method is
characterized by efficiency, i.e., the number of
operations necessary to obtain a given accuracy
of the solution, and the ultimate accuracy with
which you can approach the minimum point. The
latter determines the ultimate accuracy of solving
the inverse problem. Not always, but as a rule, a
drop in the efficiency of the algorithm is
accompanied by a decline in the accuracy of the
solution to the problem.

The one-dimensional return problem of
acoustics is considered in “Iterative methods of the
solution of the return and incorrect tasks with data
on the part of border” (Kabanikhin et al., 2006).

To increase the efficiency of acoustic
resistance, a multilevel adaptive algorithm is used.
The algorithm is based on dividing the entire
algorithm for solving the inverse problem into a
series of consecutive levels. When moving from
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one level to another, the number of parameters
changes adaptively depending on the size of the
functional and the rate of convergence — a multi-
level adaptive method (Pleshchinskii et al., 2018;
Gamzaev, 2019; Leinartas and Shishkina, 2019).
This method can only be used to obtain an
approximate (trend) solution of the inverse
problem since when moving from level to level; the
answer is interpolated over several points, i.e.,
essentially averaging over these points is
performed (Equations 1-4), where it is necessary
o(x)>0,x>0,0 eC'[0,). It is required to find
the solution of a direct task (Equations 1-3) u(x,t)
and acoustic rigidity of the environment o(x)

according to additional information (Equation 4). It
is known (Romanov, 1973), that the solution of the
direct problem (Equations 1-3) has the form
(Equation 5), Where u(x,t) — continuity x>0 and
is sufficiently smooth for t>x>0 function,
Equation 6 — Heaviside theta function.

This equation is a kind of competitor
concerning the equation with the equivalent
inverse problem when describing waves in a
rectangular channel. Substituting (Equation 5) in
(Equations 1-4), the equivalent inverse problem
relatively u(x,t)_and s(x) is obtained.

The class of nonlinear evolution equations
has several additional properties whose origin is
related to the main property of this class of
nonlinear evolution equations, that is, although
temporal evolution is nonlinear in the configuration
space, it is connected (by spectral transformation)
with simple linear development in spectral space
(Equations 7-10).

Thus, this paper aimed to study and
substantiate numerical methods for solving a one-
dimensional inverse problem of acoustics, since
they are important both from a theoretical and a
practical point of view.

2. MATERIALS AND METHODS

A difference scheme is a finite system of
algebraic equations containing a differential
equation and additional conditions (for example,
boundary conditions and / or initial distribution).
Thus, difference schemes are used to reduce a
differential problem of a continuous nature to a
finite system of equations, the numerical solution
of which is fundamentally possible on computers.
Algebraic  equations associated with the
differential equation are obtained using the
difference method, which distinguishes the theory
of difference schemes from other numerical

methods for solving differential problems.

The solution of the difference scheme is
called the approximate solution of the differential
problem. The authors introduce the net
x =ih, t =kh. represented by the equation (6) in
finite difference form (3) (Equation 11) from where
having expressed uf, (Equation 12) will be

i+1
obtained. The authors approximate a boundary
condition (7) (Alontseva and Gilev, 2011,
Samarskiy, 1971) (Equation 13).

Analytical methods are mainly used to
study single-phase or two-phase linear models of
various physical processes. It is almost impossible
to obtain an exact solution to a nonlinear model
using existing analytical methods. In connection
with this, numerical methods for solving such
problems are increasingly used in modeling, but
with their help, it is not always possible to
accurately track the law of motion of the phase
boundary.

Thus, assuming that all considered
functions rather smooth, the authors will write
down the return task (Equations 7-10) in a final
and differential look (Equations 14-17).

Conclusion of discrete analog of a formula
of Dalamber. The d'Alembert formula can found a
solution to the initial — boundary value problem
with a homogeneous first-order boundary
condition if the primary functions continue along
the entire axis odd relative to the origin. A
representation of the d'Alembert type here not only
provides information on the structure of the
general solution but can also be used as the basis
for creating a computational scheme for solving
the initial-boundary-value problem. Using a known
technique (Denisov, 1994; Kabanikhin, 1984,
Kabanikhin et al., 2004), discrete analog of a
formula of Dalamber will be received. Shifting
indexes in (Equation 14) a chain of equalities
(Equations 18-23) will be received. From where
(Equation 24) will be obtained. From where

Dalamber's formula in a discrete look
(Equations 25-30) will be received or, having
made replacement s = i — m, (Equation 31) will be
obtained.

3. RESULTS AND DISCUSSION:

3.1. Method of the circulation of the differential
scheme

The method of circulating the differential
scheme is quite natural from the physical point of
view, since it uses the theory of characteristics
along which, as a rule, the basic information about
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the features of solving the direct problem and the
medium under investigation is distributed. In the
computational aspect (by the number of
operations), this method is equivalent to a single
solution to the corresponding direct problem and
allows parallelization of the calculation procedure
(Xu et al., 2016; Guliyev and Nasibzadeh, 2018).
Substituting (Equation 31) expression in (Equation
13) and considering (Equation 15), a formula of
calculation of unknown function will be received
(Kornilov, 2005; Kraht, 2005; Nurseitova and
Tyulepberdinova, 2008) (Equations 32-33). The
authors will carry out calculations from the border
i =0 , along with characteristics, as shown in the
scheme of Figure 1-15. At first, we will be counted

Sy, then, knowing the value uZ, s, will be

calculated. Further from u,, calculating along the
characteristic, we define s, and so on (Appendix
1).

For check of the work of algorithm on the
solution of the returned task, the authors will set
exact function s(x) ; then, a direct problem will be

solved; a decision trail x=0 will be picked up,
thereby function g(t) additional information will be

defined. The authors will describe the scheme of
the solution of a direct task (Equations 34-38).
Here on the known s,, calculating along with

characteristics, we define g, (Figure 2).

3.2. Method of iterations of Landveber

For check of work of algorithm on the
solution of the returned task the authors will set
exact function s(x), then a direct problem will be
solved by method of the circulation of the
differential scheme, a decision trail at x = 0, will be
picked up, thereby function g(t) — additional
information will be defined. Now we will describe
computing experiments for various types of
functions s(x) (Nurseitova et al., 2010; Samarskiy
and Vabishevich, 2004). Linear function s(x),
noise parameter ¢ ~0.01

For the following parameters N = 200, I= 1,
h = I/N = 0.005 with function of a look s(x) = — 0.5x
— 1 the direct task was solved and function is
received g(t). After the addition of a random error
function g(t), | assumed an air results of computing
experiment are presented in Figure 3. The authors
will carry out the comparative analysis of methods
of the solution of the return problem of acoustics
(Table 1). Results of numerical calculations for
function are shown (Equation 39) with parameters
N =200, =1,h=1/N =0.005 and indignation

of entrance data |q, —q,|=0.0142.

The technology for solving the inverse
problem for objects with dispersion of sound speed
allows us to formulate a more advanced approach
to the creation of ultrasonic non-destructive testing
techniques. Here you select a frequency range
that captures the region with the dispersion of the
speed of sound.

4. CONCLUSIONS:

The approximate decision received a
method of the circulation of the differential scheme
meets to exact better than an approximation of a
way of iteration of Landveber, if data exact.
Apparently, from Figure 4.4 at inexact data, the
method of the circulation of the differential scheme
disperses as it is unstable. In Figures 4-13 it is
visible that the approximate decision received
approximation of a method of iteration of
Landveber well meets to exact and at noisy data,
though convergence speed the low. Receiving
algorithm for discrete analog of a method of
iteration of Landveber is followed by more bulky
calculations, than approximation of a method of
iteration of Landveber, but apparently from the
table, discrete analog of a method of iteration of
Landveber gives the best approach for twice
smaller number of iterations, than approximation
of a method of iteration of Landveber. Thus labor
input of realization of one iteration approximation
of a way of repetition of Landveber and discrete
analog of a method of iteration of Landveber have
one order, that is this machine time spent for the
performance of one iteration has one order.
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Figure 1. Return task Figure 2. Direct task

Figure 3. Schedules of restoration parabolic functions s(x) at indignation H§ - SH ~0.0019. *The
continuous line — the exact decision s(x); the dot line — the approximate decision
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Figure 4. Function graph of additional information g(t) for periodic type of the decision at
g — g = 0.014 . *The continuous line — the exact decision s(x); the dot line — the approximate

decision

Figure 5. Restoration of periodic function s (x) at H§ - SH =~ (0.023. *The continuous line — the exact
decision s(x); the continuous line — the exact decision
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Figure 6. Function graph of additional information g(t) for step type of the decision at
H(j - gH ~(0.003. *The continuous line — exact function g(t); the dot line — the indignant function of
additional information
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Figure 7. Function restoration s(x) by method a method of the circulation of the differential scheme at
H§ - SH =~ (0.02. *The continuous line — exact function s(x); dot line approximate decision
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Figure 8. Function graph of additional information g(t) for step type of the decision at g — g| = 0.01.
*The continuous line — exact function g(t); dot line indignant function of additional information
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Figure 9. Function restoration s(x) by method a method of the circulation of the differential scheme at
H§ - SH ~ 0.02. *The continuous line — exact function s(x); dot line approximate decision, the
circulation of the differential scheme restored by method a method
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Figure 10. Schedule of restoration of periodic function s (x) by method approximation of a method of
iteration of Landveber. *The continuous line — exact function s(x); dashed line — the approximate
decision, restored by method approximation of a method of iteration of Landveber
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Figure 12. Schedule of functionality J>(q")
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Figure 13. Schedule of functionality of a method approximation of a method of iteration of a method.
*The continuous line — values of functionality J,(q"); dashed line — values of functionality J,(q"); the

dot line — values of functionality J,(q");
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Figure 14. Schedule of restoration of periodic function s(x). *The continuous line — exact function s(x);
dashed line — the approximate decision restored by method approximation of a method of iteration of
Landveber
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Figure 15. Comparison of various methods. *The continuous line — exact function s(x); the dot line —
the approximate decision restored by method method circulation of the differential scheme; dashed
line — the approximate decision restored by method approximation of a method of iteration of
Landveber; the dash-dotted line — the approximate decision restored by method discrete analog of a
method of iteration of Landveber
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Table 1. Comparative table of methods

Method Method circulation of Approximation of a Discrete analog of a
. the differential scheme method of iteration of method of iteration of

Criterion Landveber Landveber
s = s 1.56-102 9.88-10° 2.90-107
Scheme the obvious the iterative the iterative
Iterations - 198 93

Appendix 1

Algorithm of the solution of a Direct task:

1. Value on a Equation 17 is calculated

Sy = Ug =0y

2. s, is calculated:

(@  onaEquation 17 value uf = g,;

(b) calculating on a Equation 15 value s, =u;

3. s, is calculated:

(@  onaEquation 17 value u; =g,;

(b) calculating on a Equation 15 value u’ =

(© calculating on a Equation 21 value s, .

4. S, is calculated:

(@  onaEquation 17 value ug = g,;

(b) calculating on a Equation 15 value uf =

(©) calculating on a Equation 14 value u

(d) calculating on a Equation 21 value s, .

5. And soon, s,,i=4,N is calculated:

(@  onaEquation 17 value u}' = g,;

(b)

(€)
(d)

2i 2i-2
2ia _ Uy tUg

calculating on a Equation 15 value u,"” = ——;

2

calculating on a Equation 14 along characteristics and value of functions uZ~,...,u';;
calculating on a Equation 21 value s, .
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